VENUE
The course will be held at Lund University in Lund, Sweden.

LUND
Lund is situated in south-western Sweden, in the province of Scania (Skåne). It is well connected to Copenhagen Airport (only 30 minutes by train) and to Malmö Airport (40 minutes by bus). The city was founded in the tenth century and still possesses a quaint, old-town atmosphere with winding streets and picturesque houses. Today, the city of Lund has approximately 110,000 inhabitants.

LUND UNIVERSITY
Lund University was founded in 1666. Located at the threshold of continental Europe, Lund University is now a major international institution. It is the largest single establishment for research and higher education in Scandinavia, comprising seven faculties (theology, law, medicine, humanities, natural sciences, social sciences, and technology).

Approximately 47,000 students, including 3000 post-graduates, are enrolled at the University.

A number of research institutions, hospitals, research-based industries, libraries and museums are also located on and around the university grounds.

MAX IV AND ESS
Lund University is in the middle of an intensive development phase. The two largest research facilities in Sweden - MAX IV and the European Spallation Source (ESS) - are being built in Lund.

MAX IV Laboratory is a national facility for materials and life science research based on synchrotron radiation. The light produced by MAX IV will be 100 times brighter compared to other synchrotron radiation facilities. The facility will put Sweden in a class of its own in materials, life science and nano research. In an area of two square kilometres in northwest Lund, the European Spallation Source (ESS) is being built. The ESS will be a multidisciplinary scientific research centre harnessing the world’s most powerful neutron source. Researchers will be able to study materials of everyday life, from plastics and proteins to medicines and molecules, in order to understand how they are built up and how they work. MAX IV opened in June 2016 and ESS is expected to be fully operational in 2023.

These facilities are not only intended for academics, the real strength of synchrotron X-rays and neutrons is that the technique has made its way into mainstream natural sciences and engineering. The technology is now becoming available for industrial use. We are very eager to engage the industrial users of these unique tools and to provide training and academic contacts allowing them to study their materials and processing, and develop new products through research performed at MAX IV.